Evaluation of the Quality of Various Generative AI Models in Creating Infographic Learning Media for Computer Science Education
Keywords:
Evaluation of the Quality of Artificial Intelligence, Infographic, Computer ScienceAbstract
The objectives of this study were: 1) to evaluate the quality of infographics generated by artificial intelligence for teaching and learning in primary-level computer science, and 2) to compare the quality of infographics produced by six AI models GPT, Midjourney, Bing AI, Canva AI, Google AI, and Meta AI—using ten sets of prompts designed to cover the core content of the primary computer science curriculum. The research instruments comprised a four-dimension infographic quality assessment form, which evaluated content accuracy, visual design, communication effectiveness, and attractiveness. Three experts assessed a total of 60 infographic samples (10 prompts × 6 AI models). The Index of Item Objective Congruence (IOC) ranged from 0.67 to 1.00, indicating a good level of alignment between the assessment items and the research objectives.
Descriptive statistics mean and standard deviation were employed for data analysis, and One-way ANOVA was used to compare the quality scores among the AI models. The findings revealed that infographics generated by GPT achieved the highest quality scores with statistical significance (Mean = 48.87, S.D. = 1.66), followed by Google AI (Mean = 29.63, S.D. = 1.51) and Canva AI (Mean = 25.63, S.D. = 2.45). In contrast, Bing AI, Midjourney, and Meta AI produced noticeably lower average scores. Tukey’s HSD test further classified the AI models into four quality groups: Group A: GPT; Group B: Google AI; Group C: Canva AI; and Group D: Bing AI, Midjourney, and Meta AI. These groupings reflect the different capabilities of AI models in generating educational media. The results underscore the importance of prompt design as a key factor influencing the quality of AI-generated instructional materials.
Downloads
References
สำนักงานคณะกรรมการการศึกษาขั้นพื้นฐาน. (2560). หลักสูตรแกนกลางการศึกษาขั้นพื้นฐาน พุทธศักราช 2551. กรุงเทพฯ: กระทรวงศึกษาธิการ.
Alrwele, N. (2017). Effects of infographics on student achievement and students’ perceptions of the impacts of infographics. Journal of Education and Human Development, 6(3), 104–117. Retrieved from https://doi.org/10.15640/jehd.v6n 3a12.
Bandi, A., Adapa, P. V. S. R., & Kuchi, Y. E. V. P. K. (2023). The power of generative AI: A review of requirements, models, input–output formats, evaluation metrics, and challenges. Future Internet, 15(8), 260. Retrieved from https://doi.org/10.3390/fi1508 0260.
Baxter, M., Lonsdale, M., & Westland, S. (2021). Utilising design principles to improve the perception and effectiveness of public health infographics. Information Design Journal, 26(1), 60–75. Retrieved from https://doi.org/10.1075/idj.20017.bax.
Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., ... & Amodei, D. (2023). Language models are few-shot learners. OpenAI Research. Retrieved from https://doi. org/10.48550/arXiv.2005.14165.
Mayer, R. E. (2009). Multimedia learning. (2nd ed.). England, UK: Cambridge University Press.
Phoenix, J., & Taylor, M. (2023). Prompt engineering for generative AI: Future-proof inputs for reliable AI outputs. California: O’Reilly Media.
Ramamoorthy, L. (2025). Evaluating generative AI: Challenges, methods, and future directions. International Journal of Future Multidisciplinary Research, 7(1). Retrieved from https://scholarprofiles.me/scholars/latharamamoorthy/publications/ 37182. pdf
Smiciklas, M. (2012). The power of infographics: Using pictures to communicate and connect with your audiences. England: Que Publishing.
Walter, Y. (2024). Embracing the future of artificial intelligence in the classroom: The relevance of AI literacy, prompt engineering, and critical thinking in modern education. International Journal of Educational Technology in Higher Education, 21(15). Retrieved from https://doi.org/10.1186/s41239-024-00448-3
Wang, F., Kinzie, M., McGuire, P., & Pan, E. (2010). Applying technology to inquiry-based learning in early childhood education. Early Childhood Education Journal, 37(5), 381–389. Retrieved from https://doi.org/10.1007/s10643-009-0364-6
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Faculty of Educaion Bansomdejchaopraya Rajabhat University

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
บทความที่ได้รับการตีพิมพ์เป็นลิขสิทธิ์ของคณะครุศาสตร์ มหาวิทยาลัยราชภัฏบ้านสมเด็จเจ้าพระยา
ข้อความที่ปรากฏในบทความแต่ละเรื่องในวารสารวิชาการเล่มนี้เป็นความคิดเห็นส่วนตัวของผู้เขียนแต่ละท่านไม่เกี่ยวข้องกับมหาวิทยาลัยราชภัฏบ้านสมเด็จเจ้าพระยา และคณาจารย์ท่านอื่นๆในมหาวิทยาลัยฯ แต่อย่างใด ความรับผิดชอบองค์ประกอบทั้งหมดของบทความแต่ละเรื่องเป็นของผู้เขียนแต่ละท่าน หากมีความผิดพลาดใดๆ ผู้เขียนแต่ละท่านจะรับผิดชอบบทความของตนเอง