Synthesis of Concepts and Development of the EduLink Model Using Generative Artificial Intelligence for Educational Resource Management

Authors

  • Sasikanchana Yenaeng Faculty of Education Bansomdejchaopraya Rajabhat University
  • Ruaysup Deshchaisri Faculty of Education Bansomdejchaopraya Rajabhat University
  • Kanyarat Autapao Information Technology Thepsatri Rajabhat University

Keywords:

EduLink Model, Generative Artificial Intelligence, Educational Resource Management, Intelligent Conversational System, Digital Service System

Abstract

This research aimed to synthesize concepts and develop the EduLink Model for educational resource management in higher education institutions by applying Generative Artificial Intelligence (Generative AI) together with relevant theoretical frameworks in information systems. The study employed a research and development (R&D) design consisting of three stages: studying and synthesizing conceptual frameworks, designing and developing the model, and evaluating the performance of the prototype system. The target group included seven experts. Research instruments consisted of the preliminary framework of the model, a set of 120 prompt datasets, an expert evaluation form, and the prototype system developed on the LINE Official Account platform. The statistics used for data analysis included percentage, mean, and standard deviation to evaluate the technical performance and expert assessment in accordance with the research objectives.

              The findings revealed that:

  1. 1. The preliminary framework of the EduLink Model comprised four operational layers; Interaction Layer, AI Layer, Evaluation Layer, and Data Layer, which aligned with the conceptual frameworks studied and served as a systematic foundation for designing the system architecture.
  2. 2. The developed EduLink Model successfully connected the intelligent conversational system with the educational resource database in an integrated manner, supporting centralized searching, booking, and inspection of resources.
  3. 3. Technical testing using 120 prompt datasets showed an accuracy of 94.58% and a consistency of 92.71%, both exceeding the predetermined criteria. The expert evaluation from seven experts yielded an overall mean score of 4.72, indicating a very high level.

              In conclusion, the EduLink Model demonstrated accuracy, flexibility, and practical applicability in higher education contexts. It reduced problems related to fragmented information, enhanced efficiency in searching and booking resources, and supported workload reduction for staff members. The model shows strong potential for practical implementation and further development toward digital service systems at the institutional level.

 

Downloads

Download data is not yet available.

References

กระทรวงศึกษาธิการ. (2566). แผนแม่บทการศึกษาไทยสู่ดิจิทัล พ.ศ. 2566–2570. กรุงเทพฯ: กระทรวงศึกษาธิการ.

สำนักงานคณะกรรมการการศึกษาขั้นพื้นฐาน. (2566). รายงานผลการดำเนินโครงการโรงเรียนดิจิทัลต้นแบบ. กรุงเทพฯ: สำนักงานคณะกรรมการการศึกษาขั้นพื้นฐาน.

สำนักงานปลัดกระทรวงศึกษาธิการ. (2566). รายงานสถิติระบบสารสนเทศการศึกษาและการบริหารจัดการทรัพยากรดิจิทัล. กรุงเทพฯ: กระทรวงศึกษาธิการ.

วาสนา สาระโภค. (2564). รูปแบบระบบสารสนเทศเพื่อการบริหารจัดการข้อมูลโรงเรียนอัจฉริยะ. วารสารครุศาสตร์ มหาวิทยาลัยราชภัฏบ้านสมเด็จเจ้าพระยา, 15(1), 67–79.

Bedi, S., & Sharma, R. (2020). Integration of AI in smart campus systems: Challenges and opportunities. Smart Learning Environments, 7(12), 1–15. Retrieved from https://doi.org/10.1186/s40561-020-00135-0

Chatterjee, S., & Bhattacharjee, K. (2020). Adoption of artificial intelligence in higher education: A quantitative analysis. Education and Information Technologies, 25(3), 2607–2635. Retrieved from https://doi.org/10.1007/s10639-019-10021-6

DeLone, W. H., & McLean, E. R. (2003). The DeLone and McLean model of information systems success: A ten-year update. Journal of Management Information Systems, 19(4), 9–30. Retrieved from https://doi.org/10.1080/07421222.2003. 11045748

Kasneci, E., Sessler, K., Küchemann, S., Bannert, M., Fischer, F., & Kasneci, G. (2023). ChatGPT for good? On opportunities and challenges of large language models for education. Learning and Individual Differences, 103, 102-274. Retrieved from https://doi.org/10.1016/j.lindif.2023.102274

Nurshatayeva, A., & Page, L. C. (2024). Artificial intelligence and learning ecosystems in higher education: A systematic review. Computers & Education, 208, 104-925. Retrieved from https://doi.org/10.1016/j.compedu.2023.104925

Perez, J., Daradoumis, T., & Puig, J. (2020). A framework for integrating generative AI in education. Education and Information Technologies, 25(5), 4007–4025. Retrieved from https://doi.org/10.1007/s10639-020-10170-y

UNESCO. (2022). Recommendation on the ethics of artificial intelligence. Paris: UNESCO Publishing.

Yenaeng, S., Saelee, S., & Samai, W. (2014). Automatic medical case study essay scoring by support vector machine and genetic algorithms. International Journal of Information and Education Technology, 4(5), 422–426. Retrieved from https:// doi.org/10.7763/IJIET.2014.V4.453

Zawacki-Richter, O., Marín, V. I., Bond, M., & Gouverneur, F. (2019). Systematic review of research on artificial intelligence applications in higher education—Where are the educators? International Journal of Educational Technology in Higher Education, 16(1), 39. Retrieved from https://doi.org/10.1186/s41239-019-0171-0

Downloads

Published

2025-12-30

How to Cite

Yenaeng , S., Deshchaisri , R. ., & Autapao , . K. . (2025). Synthesis of Concepts and Development of the EduLink Model Using Generative Artificial Intelligence for Educational Resource Management . Journal of Education Bansomdejchaopraya Rajabhat University, 19(2), 49–62. retrieved from https://so17.tci-thaijo.org/index.php/EduBSRU/article/view/1372