FACTORS INFLUENCING ONLINE FURNITURE PURCHASING BEHAVIOR OF SERVICE USERS IN BANGKOK METROPOLITAN AND ITS VICINITY

Authors

  • Kamontip Tantawanit Faculty of Business Administration, College of Innovation Management Rajamangala University of Technology Rattanakosin
  • Korbkul Jantarakolica Faculty of Business Administration, College of Innovation Management Rajamangala University of Technology Rattanakosin
  • Thanomsak Suwannoi Faculty of Business Administration, College of Innovation Management Rajamangala University of Technology Rattanakosin

Keywords:

Platform, Electronic Word of Mouth (e-WOM), Perceived value, Purchase intention

Abstract

This research has the objective to 1) Study the factors influencing the online furniture purchasing behavior of service users and 2) compare the level of value acceptance according to the purchase intention of different age groups. The study applied the Value-Based Adoption Model (VAM), integrating concepts from technology diffusion and value acceptance theories. study employed a convenience sampling method to recruit 406 participant who have used online furniture purchasing services in Bangkok metropolitan and its vicinity. The sample was divided by gender and age to answer the test. Distribute online questionnaires using Google Form to those who use or have used online furniture purchasing services in Bangkok and its vicinity. The method of reaching the sample group was to publish online questionnaires through various online channels, including Facebook groups, Line OpenChat, groups interested in home decoration furniture, marketplace, including posts on pages or groups related to online furniture purchasing and analyzed the data using a structural equation model. The research results 1) Factors influencing online furniture purchasing behavior of service users were found to be different age groups of service users. There is a level of acceptance of values ​​according to the purpose of service users. The age range from 18-44 years gives more importance to every factor than other age groups and 2) Factors that affect the level of acceptance of value according to the intentions of service users. It was found that perceived value and brand trust affects the level of acceptance of value according to the intentions of service users statistically significant.

References

กระทรวงดิจิทัลเพื่อเศรษฐกิจและสังคม. (2564). ข่าวประชาสัมพันธ์. สำนักงานพัฒนาธุรกรรมทาง

อิเล็กทรอนิกส์. https://surl.li/sqbole

กฤตตฤณ ใจสุดา. (2563). กลยุทธ์การสื่อสารการตลาดด้านการส่งเสริมการขายบนช่องทางเฟซบุ๊กที่มีผลต่อ

การตัดสินใจซื้อสินค้าเบเกอรี่ของผู้บริโภคในประเทศไทย [วิทยานิพนธ์ปริญญามหาบัณฑิต,

มหาวิทยาลัยมหิดล]. วิทยาลัยการจัดการ มหาวิทยาลัยมหิดล.

https://archive.cm.mahidol.ac.th/handle/123456789/3933

อัฐพล วุฒิศักดิสกุล. (2560). การสื่อสารการตลาดดิจิทัลกับการตัดสินใจใช้บริการขนส่งออนไลน์ (Online

Messengers) ผ่านแอพพลิเคชั่น ของผู้บริโภคในเขตกรุงเทพมหานคร [วิทยานิพนธ์ปริญญามหา

บัณฑิต, มหาวิทยาลัยกรุงเทพ]. คณะนิเทศศาสตร์ มหาวิทยาลัยกรุงเทพ.

http://dspace.bu.ac.th/jspui/bitstream/123456789/2829/3/auttapon_wuti.pdf

Atika, A., Kusumawati, A., & Iqbal, M. (2016). The Effect of Electronic Word of Mouth, Message Source Credibility, Information Quality on Brand Image and Purchase Intention. Ekuitas: Jurnal Ekonomi dan Keuangan, 20(1), 94-108. https://ejournal.stiesia.ac.id/ekuitas/article/view/94

Delgado-Ballester, E., & Munuera-Alemán, J. L. (2001). Brand trust in the context of consumer loyalty.

European Journal of Marketing, 35(11/12), 1238–1258. https://doi.org/10.1108/EUM0000000006475

Delgado-Ballester, E. (2004). Applicability of a brand trust scale across product categories: A multigroup invariance analysis. European Journal of Marketing, 38(5/6), 573–592. https://doi.org/10.1108/03090560410529222

Gaul, S. and Ziefle, M. (2009) Smart Home Technologies: Insights into Generation-Specific Acceptance Motives, HCI and Usability for e-Inclusion. Lecture Notes in Computer Science, 5889, 312-332. http://dx.doi.org/10.1007/978-3-642-10308-7_22

Gu, J.-C., Lee, S.-C., & Suh, Y.-H. (2009). Determinants of behavioral intention to mobile banking. Expert

Systems with Applications, 36(9), 11605–11616. https://doi.org/10.1016/j.eswa.2009.03.024

Ha, S., & Stoel, L. (2012). Online apparel retailing: Roles of e-shopping quality and experiential e-shopping

motives. Journal of Service Management, 23(2), 197-215. https://doi.org/10.1108/09564231211226114

Haddock, R. L., & Quinn, M. S. (2015). Recreational access management planning: Understanding perceptions regarding public forest lands in SW Alberta. Open Journal of Forestry, 5(4), 387– 401.

https://doi.org/10.4236/ojf.2015.54033

Howard, J. A., & Sheth, J. N. (1969). The theory of buyer behavior. Addison-Wesley.

https://www.researchgate.net/publication/235361430_The_Theory_of_Buyer_Behavior

Johnson-George, C., & Swap, W. C. (1982). Measurement of Specific Interpersonal Trust: Construction and Validation of a Scale to Assess Trust in a Specific Other. Journal of Personality and Social Psychology, 43, 1306-1317. https://doi.org/10.1037/0022-3514.43.6.1306

Laroche, M., Kim, C., & Zhou, L. (1996). Effects of brand familiarity and brand loyalty on imagery

elaboration in online apparel shopping. Journal of Global Fashion Marketing, 8(2), 123–137.

https://doi.org/10.1080/20932685.2017.1284603

Liao, S. L., Shen, Y. C., & Chu, C. H. (2009). The effects of sales promotion strategy, product appeal,

and consumer traits on reminder impulse buying behaviour. International Journal of Consumer

Studies, 33(3), 274–284. https://doi.org/10.1111/j.1470-6431.2009.00770.x

Luarn, P., & Lin, H. H. (2005). Toward an understanding of the behavioral intention to use mobile

banking. Computers in Human Behavior, 21(6), 873–891. https://doi.org/10.1016/j.chb.2004.03.003

Marcus, B., Goffin, R. D., Johnston, N. G., et al. (2007). Personality and cognitive ability as predictors of typical and maximum managerial performance. Human Performance, 20(3), 275–285. https://doi.org/10.1080/08959280701333362

Mayer, R.C., Davis, J.H. and Schoorman, F.D. (1995) An Integrative Model of Organizational Trust. Academy of Management Review, 20, 709-734. https://doi.org/10.5465/amr.1995.9508080335

Mishra, A.K. (1996) Organizational Responses to Crisis: The Centrality of Trust. In: Kramer, R.M. and Tyler, T.R., E., Eds., Trust in Organizations, Sage, Thousand Oaks, 261-287. https://doi.org/10.4135/9781452243610.n13

Nandini, G., & Samantaray, A. (2020). Online shopping: Impact on consumer behavior. ResearchGate. https://doi.org/10.13140/RG.2.2.27238.59205

Papadopoulou, G., Sambracos, E., & Xesfingi, S. (2017). Influential factors of passengers' expenditures

during a cruise trip: The case of Greece. South-Eastern Europe Journal of Economics, 15(1), 15–31. https://www.asecu.gr/old_files/Seeje/issue28/issue28-papadopoulou-sambracos-xesfingi.pdf?

Schumacker, R.E. and Lomax, R.G. (2010). A Beginners Guide to Structural Equation Modeling. Routledge, New York. http://ndl.ethernet.edu.et/bitstream/123456789/50284/1/8.pdf

Sussman, S. W., & Siegal, W. S. (2003). Informational influence in organizations: An integrated approach

to knowledge adoption. Information Systems Research, 14(1), 47–65.

https://doi.org/10.1287/isre.14.1.47.14767

Van der Heijden, H. (2004). User acceptance of hedonic information systems. MIS Quarterly, 28(4),

–704. https://doi.org/10.2307/25148660

Zhao, J.-D., Huang, J.-S., & Su, S. (2019). The effects of trust on consumers’ continuous purchase

intentions in C2C social commerce: A trust transfer perspective. Journal of Retailing and Consumer Services, 50, 42-49. https://doi.org/https://doi.org/10.1016/j.jretconser.2019.04.014

Published

2025-11-19

How to Cite

Tantawanit, K., Jantarakolica, K., & Suwannoi, T. (2025). FACTORS INFLUENCING ONLINE FURNITURE PURCHASING BEHAVIOR OF SERVICE USERS IN BANGKOK METROPOLITAN AND ITS VICINITY. Srinakharinwirot Business Journal, 16(2), 77–91. retrieved from https://so17.tci-thaijo.org/index.php/BASSBJ/article/view/1168

Issue

Section

บทความวิจัย